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Abstract. The dynamics of pattern formation is studied 
for lateral-inhibiton type homogeneous neural fields 
with general connections. Neural fields consisting of 
single layer are first treated, and it is proved that there 
are five types of pattern dynamics. The type of the 
dynamics of a field depends not only on the mutual 
connections within the field but on the level of homo- 
geneous stimulus given to the field. An example of the 
dynamics is as follows: A fixed size of localized 
excitation, once evoked by stimulation, can be retained 
in the field persistently even after the stimulation 
vanishes. It moves until it finds the position of the 
maximum of the input stimulus. Fields consisting of an 
excitatory and an inhibitory layer are next analyzed. In 
addition to stationary localized excitation, fields have 
such pattern dynamics as production of oscillatory 
waves, travelling waves, active and dual active tran- 
sients, etc. 

1. Introduction 

Cortical neural tissues can be regarded mathematically 
as neural fields which form and propagate interacting 
patterns o f excitation. The dynamics o f such patterns in 
neural field must play an essential role in cortical 
information processing. The present paper uses ma- 
thematical analysis to study the mechanism of for- 
mation and interaction of patterns in homogeneous 
fields. The neural model provides a good example of 
non-homogeneous pattern formation in a homo- 
geneous field. This problem has recently attracted much 
attention in relation to morphogenesis, and has been 
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studied extensively using the reaction-diffusion model 
[e.g., Turing, 1952; Levin, 1974; see also Grossberg, 
1976]. 

There have so far been many neural field studies 
(see, e.g., Wiener and Rosenblueth, 1946; Beurle, 1956; 
Griffith, 1963, 1965 ; Farley and Clark, 1961 ; Coleman, 
1971; Ahn and Freeman, 1973; Ellias and Grossberg, 
1975; Stanley, 1976). Wilson and Cowan (1973) pro- 
posed a plausible field equation and showed by 
computer-simulated experiments that their equation 
has three interesting types of pattern dynamics. 
Reverberation and propagation of excitation patterns 
was studied in discrete homogeneous nerve nets (Amari, 
1975). Recently, Boylls (1975) proposed an interesting 
field model of the cerebellum. 

Most of the above neural fields are closely related to 
randomly connected nets. A small portion of a nerve 
field usually includes so many randomly connected 
neurons that a statistical manipulation yielding a 
continuous field equation is possible. The dynamics of 
randomly connected nerve nets has been studied in 
detail (e.g., Amari, 1971, 1972, 1974). Part of the 
mathematical difficulty involved in deriving such a 
macroscopic equation has been solved recently (Amari 
et al., 1977). 

The field equation of the present paper is also 
derived by statistical considerations. We study first one- 
dimensional homogeneous fields of lateral-inhibition 
type consisting of one layer to describe the formation of 
patterns of excitation, their interaction, and their 
response to input stimuli. We prove that the equation 
has five types of pattern dynamics, and gives a complete 
taxonomy of such fields. 

The first is a monostable field, in which all the 
excitation eventually dies out. The second is also a 
monostable field, in which the entire field becomes 
excited. These two have rather trivial dynamics. The 
third is an explosion-type bistable field, in which 
excitation spreads without limit if the initial stimulation 
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Fig. 1. Neural field 
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Fig. 2. Weighting function w(x) o f a lateral-inhibition type neural field 

is given in a wide enough range, but dies out if the initial 
stimulation is given in a narrow range. The fourth is 
also a bistable field, in which initial excitation causes 
either a localized excitation of a definite length or its 
extinction. The localized excitation moves until it finds 
the position of the maximum of the input stimuli. The 
fifth type of field maintains a spatially periodic exci- 
tation pattern. The type of dynamics changes with the 
average stimulation level to the field. 

It is in general difficult to prove the stability of 
pattern dynamics (see, e.g., Maginu, 1975). Oguzt6reli 
(1975) recently proved the stability of the solution of a 
neural field. He, however, treated a monostable case, 
and excluded the multi-stable dynamics, which may 
play an essential role in neural information processing. 
We will give a rigorous proof of stability for our five 
types of dynamics. 

It has been shown that neural oscillation occurs in a 
system consisting of excitatory and inhibitory neuron 
pools (Amari, 1971, 1972a ; Wilson and Cowan, 1972). 
In order to study dynamic pattern formation related to 
neural oscillation, we need a field consisting of at least 
two layers. In this paper, I will demonstrate the simple 
mechanism of neural oscillation and active transients, 
which occur in a field consisting of excitatory and 
inhibitory layers. It will also be shown that traveling 
waves exist in such a field. 

A competition and cooperation principle has been 
proposed as one of the common mechanisms in nerve 
nets (Arbib, 1976). Montalvo (1975) showed that a 
number of neural models (Kilmer et al., 1969 ; Didday, 
1970; Dev, 1975) all make use of this principle. In future 
research, we intend to use the present field theory to 

provide a basis for a neural competition-cooperation 
mechanism. However, it will be left to a later paper to 
explicitly analyze the models treated by Montalvo (see 
Amari and Arbib, in press). 

2. The Neural Field Equation 

Let us consider a neural field consisting of m types of 
neurons. We can arrange the neurons in m layers, each 
layer including one type of neuron (Fig. 1). The neurons 
may be connected in a random manner. By regarding 
small portions of each layer as homogeneous random 
subnets, we can treat the entire field as a net composed 
of these homogeneous subnets. We have already stu- 
died in detail the equations of a net composed of 
randomly connected subnets (Amari, 1971, 1974). We 
need only a limiting process to obtain the equation of a 
continuous field. For  this purpose, it is convenient to 
start with random nets of analog neurons (Amari, 
1972a). 

Let u i(x, t) be the average membrane potential o f the 
neurons located at position x = (x 1, x2)  at time t on the 
ith layer. Then, we can assume that the average activity, 
i.e. the pulse emission rate, of the neurons at x at t is 
written as 

z i i x ,  t) = f~ [ui(x, t)], 

where f / is  a non-linear function. Function fi is called 
the output function, and is monotonically non- 
decreasing, saturating to a constant for large u i. The 
function f~ can be derived by statistical considerations. 

Let w i j ( x ,  y)  be the average intensity of connection 
from neurons in t h e f  ~ layer at place y to neurons of the 
ith layer at place x. When we need to take pulse 
conduction time and synaptic delay into account, we 
must use a function wi j ( x ,  y ;  t). This function represents 
the degree of stimulation of neurons at x in the i th layer 
by the pulses emitted from neurons at place y of the fh 
layer t time units before. 

The intensity of the stimulus arriving at place x at 
time t of the ith layer can be decomposed into 

~i + si(x, t), 

where gi denotes the average stimulation level at the i th 
layer and s i (x,  t) denotes the deviation from the average 
si. Let - r  i be the resting potential. If there is no 
deviational input, the potential u i will converge to 

h i = -d i - r i 

with time constant zi, where z i is the time constant for 
dynamics of the ith type of neuron. The level h i is usually 
negative, depending on the average stimulation si. The 
value of h i can thus be controlled from outside the field. 
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We can now write the field equation: 

Oui(x, t) 
zi Ot 

�9 = - u i 4- ~ ywij(x , x ' ; t -  t') Zj(x', f)  dx' dr' + h i 4- s i (x, t), 
j = l  

(1) 

Zi(x', t') = fi [ui(x', t')]. (2) 

When wij(x, y; t) depends on x - y  only, the field is 
homogeneous. If the effect of the time lag can be 
neglected, we can simplify the equation by using 
wij(x,y ) instead of wij(x, y; t) and dropping the 
integration of time t'. 

3. Single-Layer Field Equation of Lateral Inhibition 
Type 

In the present paper, we study the mechanism of 
formation of a localized excitation pattern in homo- 
geneous fields. To this end, we first consider simple 
fields which are 1. one-dimensional, 2. homogeneous, 3. 
have negligible time lag, and 4. consist o f only one layer, 
including both excitatory and inhibitory neurons. 

We further consider a special case in which the non- 
linear output function is the step-function: 

0, u < 0  
f ( u ) =  1, u > l .  

This means that a neuron fires at its maximum rate 
when the potential exceeds a threshold, and does not 
fire otherwise. The origin of the potential is chosen such 
that the threshold is zero. The step-function is chosen 
only for mathematical convenience. The results of  the 
present paper are valid even when the step-function is 
replaced by a moderate monotonically increasing func- 
tion with saturation. In that case, the mechanism of 
pattern formation is qualitatively the same, because our 
system is structurally stable. 

Since the field consists of only one layer, we can 
write the field equation in terms of only one u(x, t) 

0u(x, t) 
z c3~ - u+ ~ w ( x - y ) f [ u ( y ) ] d y + h + s ( x , t ) ,  (3) 

where we put 

w ( x -  y) = w(x, y) 

by virtue of the homogeneity. This is the basic equation 
of our simplified fields. 

We treat fields of lateral inhibition type: 
1. Excitatory connections dominate for proximate 

neurons, 
2. Inhibitory connections dominate at greater 

distances. 

This means that the weighting function w(x) has a 
shape shown in Figure 2, i.e. w(x) is positive in some 
neighborhood of the origin and negative or equal to 0 
outside that neighborhood. For  simplicity's sake, we 
assume symmetry of w(x), so w(x)= w ( - x ) .  There are 
no other restrictions on w(x). 

4, Equilibrium Solutions in the Absence of Input 

We study equilibrium solutions of (3) in the absence of 
inhomogeneous input 

s(x, t) = 0. 

Since (?u/&=O at equilibrium, equilibrium solutions 
satisfy 

u(x)= S w ( x - y ) f [ u ( y ) ] d y + h .  (4) 

Given a distribution u(x) of potential, neurons at 
place x are excited when 

u(x )>0 .  

Let 

e [u] = {xlu(x) > 0} 

be the excited region of the field for potential distri- 
bution u(x). Then (4) can be rewritten as 

u(x)= ~ w ( x - y ) d y + h .  (5) 
R[u] 

An equilibrium u(x), if any, satisfying R[u]=~b, 
i.e. u(x)<__O for all x so that no region is excited, is 
called a @solution. An equilibrium, if any, for which 
R [ u ] = ( - o o ,  co), i.e. the whole region is excited, is 
called an oo-solution. 

Now, we define a localized excitation. By a localized 
excitation we mean a pattern u(x) whose excited region 
is a finite interval. In other words, a pattern u(x) for 
which 

R [U] = (ax, a2) 

is a localized excitation from place a 1 to place a a o f  
length a z - a 1 (a I < a2). 

Since the field is homogeneous, if u(x) is an equilib- 
rium solution, then u ( x -  a) is also a solution. We call a 
localized excitation solution u(x) of length a an a- 
solution, and assume without loss of generality that it 
satisfies 

R [u] = (0, a). 

The structure of the field is specified by the con- 
nection function w(x). Let 

w ( x ) =  i w(y) dy (6) 
o 
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Fig. 4. A localized excitation 

be the integral of w(x). Then we can see from the 
definition that W(0)=0 and 

W ( x )  = - w ( -  x ) .  

Moreover, by inspecting Figure 3, we see that W(x) has 
one peak, as is shown in Figure 3. There are two 
important quantities 

W,, = max W(x),  
x > 0  

Woo = lim W(x) 
x ~ o o  

by which properties of the field are specified. 
The following theorem gives the conditions for the 

existence of equilibrium (a-, oo-, and a-solutions. 

Theorem 1. In the absence of input: 
1. There exists a (a-solution if and only if 

h < 0 .  

2. There exists an m-solution if and only if 

2Woo> - h .  

3. There exists an a-solution (a local excitation of 
length a) if and only if h < 0  and a > 0  satisfies 

W(a)+h=O.  (7) 

The proof is not difficult, but is given in the appendix. 
Let us classify the field into 

Case I~' Woo>O; 2Woo>W,, 
Case Iz: Woo>0; 2W~o<W,~ 
Case II" W~ <0 .  

We can then obtain the taxonomy of equilibrium 
solutions for varying stimulus level h. 

Theorem 2. The following diagrams show the sets of 
equilibrium solutions for various values of h in the 
absence of input. 

Case I �9 2W~ > W m 

- 2 %  -w~ - %  

a 

oo 

{oo} 

0 
'h  

Case I 2 :  W,~>2Woo > 0  

{(a} { al} { ~ i  a2 

/!} 
-W, ,  -2Woo - W ~  0 

{oo} 

'h 

Case II : Woo < 0 

{(a} al 

a2 

-W, ,  0 - 2 W ~  

{oo} 

~h 

where O, oo and a denote, respectively, the existence of 
(a-, oo-, and a-solutions. ~ denotes the existence 
of multi-peak solutions but no localized solutions. 

The proof of Theorem 2 is also given in the 
appendix. This theorem gives a complete list of equilib- 
rium solutions in the absence of input 1. The set of 
equilibrium solutions changes with the stimulus level h. 
Consider, for example, a field of Case II, Woo <0,  to see 
how the dynamics of the field changes with h. When h is 
smaller than - Win, there exist no equilibrium solutions 
but a (a-solution, so that all excitation eventually dies 
out. When h increases to satisfy - W,~ < h < 0, there exist 
two localized excitations, a t- and a2-solutions, besides a 
(a-solution. In this case, the field can be quiescent, and it 
can also retain a localized excitation. When h satisfies 
0 < h < - 2 W o ~ ,  neither localized excitation, infinitely 
wide excitation nor quiescent solutions can exist. The 
field displays a spatially periodic pattern of exitation. 

1 A number  of localized solutions can coexist, if they are separated 
so far that no interaction occurs. See Section 7 



For a strong stimulus level, h > - 2W~o, an oo-solution is 
the only equilibrium, and the whole field becomes 
excited. 

5. Stability 

We need to study the stability o f solutions, in order fully 
to determine the dynamical properties of the field. The 
following analysis looks at the behavior o f a single peak 
of a solution u(x, t) which is not necessarily an equilib- 
rium, so that it may be changing with t. Let the excited 
region at time t be 

R [u(x, t)] = (x 1 (t), x2 (~)) 

and let 

Ou(x~, t) Ou(x~, t) 
Cl - -  ~X ' C2 - -  ~X  

be the gradients of u(x, t) at the boundaries xa and x 2 of 
the excited region. After a short time dt, u(x, t) changes 
to u(x,t+dt),  and accordingly, the excited region 
changes to 

R [u (x, t + dt)] = ( x  1 (t + dr), x 2 (t + dt)) 

(Fig. 4). Now we consider the motion of the excited 
region. The boundaries of the excited region satisfy 

u(xi, t) = 0 at time t 

u(xi+dxi, t+dt)=O at time t+dt ,  

where xi(t + dr) = x i + dx i (i = 1, 2). A Taylor expansion 
of the latter equation yields 

Ou(xi't) Ou(x~'t) dt=O, i=1 ,2  Ox dx~ + ~ 

for infinitesimally small dx~ and dt. Since u(x~, t) =0  at 
time t, we have from (3) 

~u(x~, t) x2~t~ 
"c & - ~ w ( x - y ) d y + h = W ( x 2 - x O + h .  

x~(t) 

We thus have 

dx 1 - D u / 3 u _  1 [ W ( x 2 - X l ) + h ] .  (8) 
dt ~[ /Ux ~q 

Similarly, we have 

dx2= 1 
[W(x 2 -  xl) + hi .  (9) 

dt zc 2 

These show the velocities of the boundaries of the 
excited region. Let 

a(t) = x~ ( t ) -  x~ (t) 

be the length of the excited region at time t. Then, by 
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subtracting (9) from (8), we have 

dt - ~ + [W(a)+h].  (10) 

This is the dynamical equation describing the change of 
length of the excited region. We have thus reduced the 
complex field equation to a simple equation for the 
length of the excited region. 

The equilibrium length of (10) is given by 

W(a) + h = O, 

in agreement with Theorem 1. Moreover, an equilib- 
rium a is stable if 

dW(a) 
- - < 0  

da 

and unstable if 

dW(a) 
- - > 0 .  

da 

We can, therefore, easily check the stability of local 
excitation from the graph of W(x) (Fig. 3). For example, 
when there are two solutions a 1 and a z (a~ < az), the a t- 
solution is always unstable and the az-solution is stable. 
However, the condition 

W ~ + h > 0  (11) 

is necessary in order that a finite excited region grows to 
an oo-solution. If this condition is not satisfied, an oo- 
solution cannot be reached without stimulating in- 
finitely wide regions. Therefore, we neglect oo-solutions 
in the case when condition (11) fails. By deleting oo- 
solutions from the entries of h < - W~o in Cases I x and 
I2, the dynamics of Cases I x and 12 are simplified and 
coincide. We have the following stability theorem. 

Theorem 3. The stabilities of equilibrium solutions are 
shown in the following, where a 2>a 1 and ~ denotes 
unstable solutions. 
Case I. W~ >0 

a2 

-w~ -w~  

/!/ 
~h 

Case II. Woo < 0  

{r ~, 

a2 

__2"l--I--L_r--t__ {oo} 

- 2 %  
,h 
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Fig. 6. Stimulation ~(x) given by a localized excitation 
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Fig. 7. A solution of (15) 

From the theorem, we can see that there are three 
types of dynamics besides the two trivial cases where a 
~b- or m-solution is the only equilibrium. They are 

A: {~b,a, oo}, 

B: {qS, al, a2} , 

C: { _ ~ _ } .  

Type A dynamics is an explosion type : initial excitation 
whose length is less than a dies out, whereas that of 
length greater than a grows to infinity. Type B dy- 
namics is bistable : initial excitation of length less than 
a I dies out, while excitation of length greater than a 1 
converges to a localized excitation of length a 2. Type C 
dynamics shows a spatially periodic pattern. Again, the 
type of dynamics changes with the average stimulus 
level h. 

6. Response to Stationary Input Stimulus Patterns 

We have so far disregarded the inhomogeneous input 
term s(x, t). Let us consider the effect of a stationary 
nonhomogeneous input stimulus s(x). When s (x) is very 

strong compared with mutual excitation and inhibition, 
it will dominate the solution. We therefore consider the 
effect of an input es(x), where e is a small number. 

Starting with a localized stable equilibrium exci- 
tation Uo(X ), we want to obtain a solution of the form 

u(x, t) = Uo (x) + eu (x, t), 

where terms of order e2 are neglected. Let a 0 be the 
length of the excited region of Uo(X ). Then a o satisfies 
W(ao) + h =0. Let x 1 (t) and x2(t ) be the boundaries of 
the excited region. Then, we can obtain the velocities of 
the moving boundaries as before, with h + 8s(x) replac- 
ing h in (8) and (9) so that the equations now take the 

1 
[ W ( x  2 - -  X 1 )  -}- h + es(xl)], 

dt rc 1 

d x 2 _  1 
[W(x 2 - xl) + h + es(x2) ] . 

dt zc 2 

The length of the excited region is written as 

a(t) = x 2 ( 0 -  x l (t) = a 0 + ea 1 (t) + .... 

We can also expand the gradients c i as 

&(xl ,  t) 
C 1 ~ = C -t- 8CI1 

&(x2, t) _ ! 
C - -  gC 2 C2 - -  ~ X  

where c is the gradient of the waveform Uo(X ) at the 
boundary. Since the field is symmetrical, Uo(X ) has also 
a symmetric shape and the gradients of both the 
boundaries coincide except the sign. By neglecting the 
higher order terms in e, we obtain 

1 d ( x i + x 2 )  g 
2 dt - 2zc [s (x2)-  S(Xl)] ' (12) 

while the increase ea I (t) of the length of the excited 
region satisfies 

da 1 1 
- [2W(ao)ai+s(x l )+S(X2)] .  (13) 

dt zc 
The first equation describes the motion of the center of 
the excited region, and the second describes the change 
in the length of the excited region. 

The excited region moves right if s(x2)>s(xl) ,  and 
to the left if S(Xa)> s(x2). Therefore, the excited region 
moves in the direction of increasing stimulus, searching 
for the maximum of s(x). It stops at a peak around 
which s(x)'s are balanced. At the same time, the length 
of the excited region changes slightly. According to the 
equilibrium solution of (13), it becomes 

[s(x~) + s(x~)]  
a(t) = a o - 

2w(a0) 

The dynamics (13) is stable, since W(ao)< O. 

This is only a local search but may not be trapped by 
the nearest peak. The excited region is not trapped at a 

f o r m  
dx~ 



small peak of width less than a0, because there is no 
balancing of s(xl) and s(x2) around this peak, where 
x z - x  I is nearly equal to a o. In Figure 5, it is not 
trapped at P~ but stops at P2. It moves until it finds a 
maximum of s(x), which spreads more than %. 

7. Interaction of Excitation Patterns 

When the excitation pattern has two positive regions 
(let us say "two excitations" for short), they interact 
with each other. Assume that an excitation exists on the 
region ( -  a, 0). Activity in this region excites or inhibits 
other neurons. The total stimulation given to the 
neurons located at a point x > 0 is 

0 x + a  

~(x)= y w(x -y )dy=  ~ w(y)dy. 
--a x 

Hence, the effect produced by an excitation con- 
centrated on ( - a ,  0) is equivalent to an external input 
~(x). 

The function ~(x) usually has a shape of  the kind 
shown in Figure 6. It decreases monotonically to point 
XA ; and then increases until x = xB. After then, it keeps a 
constant value (this value may be 0). The exact shape, of 
course, depends on w(x) and a. 

When there is a second excitation around x, the 
neurons at that point receive stimulus ~(x) from the first 
excitation located on ( - a ,  0). In this case, the second 
excitation moves searching for the maximum of ~(x). 
The effect of  the second one on the first one is similar. 
Therefore, when they are located at a distance shorter 
than XA, they attract each other, combining into one 
localized excitation. When two excitations are located 
at a distance between x A and x m they repel each other, 
moving in opposite directions. When they are located at 
a distance greater than xB, no motion is induced and 
they coexist independently. (An excitation pattern, 
however, may cause a change in the stimulus level h.) 
This explains the interaction of  excitation patterns. 

8. Formation of Dynamic Patterns 

A field consisting of  two layers can have the mechanism 
of forming dynamic patterns such as oscillatory pat- 
terns and travelling wave patterns. We consider fields 
consisting of excitatory and inhibitory layers, in which 
the inhibitory neurons inhibit only the excitatory 
neurons. Moreover, the excitatory neurons have very 
narrow fan-out connections to the inhibitory neurons 
so that the excitatory neurons at place x excite the 
inhibitory neurons at place x only. We then have the 
following field equation: 

z t3ul(x,c3t t)_ ux(x) + ~ w l ( x -  x')f[ul(x', t)ldx' 

- -  ~ W 2 ( X  - -  x ' ) f [ u 2 ( x '  , t ) ] d x '  + h 1 + s 1 
~u2(x, t) (14) 

Z (3t = - 1 2 2 ( x ) + w 3 f [ u 1 ( x ' t ) ] w h 2 + s 2 "  
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8.1 Oscillation 

We first look for spatially homogeneous solutions. A 
homogeneous solution 

12~(x, t) = ui(t)  

which does not depend on position x must satisfy the 
simplified equation 

T{l I = - -  121 + wlf(ua)-  w2f(122) + h 1 
(15) 

Z{/2 = --  U 2 + w 3 f ( u l )  + h 2 

which is obtained from (14) by integrating it over x, 
where 

w i= ~ wi(x)dx, i= 1, 2 
- o o  

and we put s~ = 0. 
This may be regarded as the equation of a lumped 
system consisting of  excitatory and inhibitory neuron 
pools. 

Since f i s  the step function taking on values 1 and 0, 
the terms f(u~) are constants on each quadrant of the 
ui-u2 plane. Let us adopt the vector notation, 

u=(121,u2) 
h = (hi, h2) 

c~ = (w~, w3) 

c 2 = ( - w 2 , 0 )  

Then, in the first quadrant where u l > 0  , u2>0  , (15) 
reduces to 

zil= - u + u z ,  (16) 

where 

ui=h+cl  +c  2. 

Therefore, u changes linearly in the direction toward u r. 
Similarly, in the second quadrant where u 1 < 0, u 2 > 0, u 
changes linearly toward 

u l i = h + c  2 �9 

In the third quadrant where u 1 <0, 122 <0,  and in the 
fourth quadrant where 121 >0, u2<O, u changes, re- 
spectively, toward 

l g l i  I -~- h 

ulv=h+ci .  

Generally, u changes linearly toward u s (J = 1, II, 111, 
IV) on the Jth quadrant. 

The four points ur, un, utn , and Urv form a 
parallelepiped. It shifts in parallel as h changes. The 
solution of (15) can be obtained graphically. We show 
one example in Figure 7. When u starts initially at A in 
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Fig. 8. An oscillatory solution 
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Fig. 9. Dual active transient 

the IVth quadrant, it moves toward Uiv. However, it 
enters into the /st quadrant at Point B, so that it 
changes the direction toward u r At Points C and D it 
changes the direction, and at last converges to the point 
u m which lies in this case in the IIIrd quadrant. 

In general, if u s lies in the J th  quadrant, it is a stable 
equilibrium. The system is monostable or bistable 
depending on the number o f the stable equilibria. In the 
case of Figure 8, there are no stable equilibria, because 
no us's are in the J th  quadrant. 

We can prove that there exists in this case a stable 
oscillation, whose orbit is shown in Figure 8. At what- 
ever initial state u(t) starts, it becomes oscillatory. The 
period of the oscillation changes with the average 
stimulation level h. The oscillation occurs only in the 
gystems with w~<w> i.e. the system in which the 
inhibitory connection is stronger than the self- 
excitatory connection. This fact is shown in the follow- 
ing theorem. (The proof  is given in Appendix.) 

Theorem 4. In the case w~ > w2, the system shows either 
monostable or bistable behavior depending on h. In the 
case wa <w 2, the system shows any of monostable, 
bistable or oscillatory behavior, depending on h. 

We can also point out some interesting transient 
phenomena. In the case of Figure 7, the system is 
monostable, u m being the only stable equilibrium. In 
this system, when u 1 is stimulated to become positive, 
then u enters in the IVth quadrant (A). In this case, 
going towards Uiv, u 1 becomes bigger and u 2 also 
becomes positive (B). Then, ut decreases while u 2 still is 
growing (C). They turn to decreasing (D) and at last, 
both u t and "/12 become negative converging to um. 
However, if the initial stimulation is small (u, <0), u 
never enters the 1Vth quadrant and u monotonically 
converges to um. This is the phenomenon called the 
active transient (Wilson and Cowan, 1973). 

We also have the dual of the above phenomenon. In 
the case shown in Figure 9, the system is monostable, 
the excited state u, being the only stable state. When u is 
shifted to point A by some inhibitory stimulus, u 1 
decreases further, and u 2 decreases, too. Both u I and 
later u2, then, start to increase, returning to u r This may 
be called the dual active transient, and may have some 
relation with the cerebellum model of Boylls (1975). 

In the case where inhibitory neurons have con- 
nections within themselves, a similar analysis is pos- 
sible. The results are again similar. We need a three- 
neuron-pools model in order to obtain the soft oscil- 
lation, i.e. the case where there exists a stable oscillation 
around a stable equilibrium. Such a system usually lies 
in the equilibrium state. But, once strong stimulation 
arrives, the system begins to oscillate and keeps the 
oscillation even after the stimulation is removed. This 
kind of oscillation has been used in the model of the 
kindling effect (Lieblich and Amari, 1977). 

8.2 Travelling Waves 

We have studied the homogeneous solutions o f the field 
equation. When a part o f a field is stimulated uniformly, 
a homogeneous solution will be observed in that part of 
the field if the part is sufficiently wide. The active 
transient and oscillatory waves are aroused in the field 
in this manner. In any case, the aroused excitation will 
propagate over the field, in some cases gradually fading 
out but in other cases growing to a stationary travelling 
wave of a fixed shape. We look for the condition for the 
existence of a stationary travelling wave. 

When the field equation has a stationary travelling 
wave solution, we can put 

ul(x, t) = g t ( x -  vt) (17) 

u2(x, 0 = g z ( x -  vt), 

where v is the velocity of the wave, and g, and gz are the 
wave forms in the excitatory and inhibitory layers. We 
introduce the new variable 

y = x - - v t .  



Then, yand  t toge the r fo rmamoving  re~rence flame of 
the field. 

For  the stationary travelling wave solution (17),we 
have 

Ou 1 
= -- vg'l (Y) & 

~u 2 
= - vg'z(y), & 

where 

dg(y) g'(y) = 
dy  

Therefore, the equation reduces to 

- rvg', (y) = -- gl(Y) + ~ wl(Y-- Y')f[gl(Y')]dY ' 

- ~ w 2 ( y -  y')f[g2(y')]dy' + h , ,  (18) 

- rvg'2(Y) = - g2(Y) + w3f[gl(Y)] + h2. (19) 

Let a be the length 0 f the excited region 0 f the travelling 
wave of the first layer, and assume 

Rig1]  = (0, a). 

Let the excited region of the second layer be 

R[g2] = (Yz, Y2). 

Since 

1, 0 < y < a  
f [g l (Y)]= O, otherwise, 

we can solve (19) explicitly under the boundary 
condition 

g2( ---/- 0(3) = h2, 

i.e. the field is in the quiescent state at the infinities 
(h 2 < 0). The solution is given by 

I h y > a  
g2(Y) = w3(1 - exp {(y - a)/w}) + h2, 0 < y < a 

[ w 3 { 1 - e x p ( - a / v z ) }  exp (y /w)+h2 ,  y < 0 .  

Therefore, Yl and 22 can be solved from 92(Yi)= 0 as 

Yl = vz log h2  3/exp(a) 
Y 2 = a + v z l o g ( l + ~ )  

which depend on the unknown parameters a and v. 
Let 

a Y2 
K(y) = ~ Wx(Y -- y ' )dy ' -  ~ w2(y - y')dy'. 

0 Yl 
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Fig. 10. Waveform of travelling wave solution 

Then, (18) can be explicitly solved under the boundary 
condition 

gl(-]- oo) = h i ,  ( h i < 0 )  

as 

l ex fy-y'l gl(Y) = ~ ! P ~ T - T  ~ K(y')dy'-t-h 1 . 

This solution must satisfy the original assumption 
Rig1] = (0, a). We therefore require 

g l ( O ) = g l ( a ) = O  

or  

~ exP { Y } K(y)dy + =0  

exp - K ( y + a ) d y + v z h  1 =0 .  

We can determine the unknown a and v from the 
above equations. If the equations have a positive 
solution (a, v), there surely exists a stationary travelling 
wave in the original field equation, with length a and 
velocity v. 
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Fig. 11. Stability of oscillation 
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We show an example of the numerical calculation, 
where  we pu t  

wi(x ) = ~ exp _ -  ]/2~zo- i t ~ , i = 1 , 2  

A 1 = 2 . 0  A 2 = 4 . 0  o '1=1 .0  o '2=1 .5  

w 3 = 2 . 0  h i = - 0 . 1  h 2 = - l . 0  z = l .  

There  exists a s t a t i o n a r y  t rave l l ing  wave  in  this field. 
The  l eng th  a a n d  the veloci ty v are  g iven by  

a = 7 . 6 ,  v = 7 . 3  

respect ively.  The  wavefo rms  are s h o w n  in F igu re  10. 

9. Concluding Remarks 

We have shown three interesting types of dynamics 
which occur in single-layer homogeneous neural fields 
with lateral inhibitory connections. Though we have 
used a very simple model, it seems to have sufficient 
generality as far as the mechanism of formation of 
localized excitation patterns is concerned. 

We have also shown the mechanism o f formation o f 
dynamic patterns such as oscillatory and travelling 
waves, which occur in double-layer homogeneous neu- 
ral fields. Our method consists of reducing the field 
d y n a m i c s  to the d y n a m i c s  of  the  b o u n d a r i e s  o f  excited 

regions.  
There  have  been  p r o p o s e d  m a n y  in te res t ing  mode l s  

re la ted  to n e u r a l  fields (e.g. Boylls,  1975 ; D idday ,  1970 ;  
Dev,  1974). W e  p ropose  to give a theore t ica l  f o u n d a t i o n  
to them.  In  future  research,  we shal l  explore  the 
e x p l a n a t i o n  o f  D i d d a y ' s  m o d e l  by  T y p e  B d y n a m i c s ;  
a n d  Dev ' s  mode l  by  a t w o - d i m e n s i o n a l  field in  which  
the  d y n a m i c s  in  the d i spar i ty  d i m e n s i o n  is o f  T y p e  C 
a n d  tha t  in  the  spa t ia l  d i m e n s i o n  is o f  T y p e  A. This  
needs  m o r e  de ta i led  cons idera t ion .  

W e  thus  i n t e n d  o u r  field theo ry  to give a theore t ica l  
basis  to the  s tudy  of  c o m p e t i t i o n  a n d  c o o p e r a t i o n  in  
b r a i n  theory  (Arbib ,  1976; M o n t a l v o ,  1975). A n o t h e r  
basis  will come  f rom the  theory  o f  se l f -organiz ing  nerve  

nets (Amari, 1972b). It seems important to unify 
statistical neurodynamics, field theory and self- 
o r g a n i z a t i o n  theory.  

Appendix 

1. Proof of  Theorem 1 

1) If there is a @solution u, (5) yields u(x) = h. Rfu] = ~b requires h < 0. 
On the contrary, if h<0, u(x)=h is surely a solution of (5). 

2) If there is an oe-solution u, it satisfies u(x)= S w ( x - y ) d y - h  
- c o  

= 2 W ~ - h .  R[u]=( -oe ,  ov), however requires 2W~>h.  On the 
contrary, if 2W~ >h, u ( x ) = 2 W ~ - h  gives an m-solution. 

3) If there is an a-solution u with R[u] =(0, a), it satisfies 

a 

u(x)= ~ w ( x -  y)dy + h= W ( x ) -  W ( x -  a) + h. (14) 
o 

This solution obviously should satisfy 

u(O) = u(a) = 0, (15) 

which implies W(a)= h. On the contrary, when W(a)= h holds, u(x) 
given by (14) satisfies (15). Moreover, we can prove that u(x) = W(x) 

- W(x - a) + h is positive on the interval (0, a) and negative elsewhere, 
provided h<0. This shows that (14) is the required equilibrium 
solution. 

2. Proof of  Theorem 2. 

From the shape (Fig. 3) of W(x), we can easily obtain the following 
lemma. 

Lemma 1. In case W~>O, W(a)+h=O has exactly two positive 
solutions a 1 and az, i f -  W~ > h > - W m ; it has one and only one positive 
solution if - W~ < h < 0 ;  and no solutions for other h. In case W~ <0, 
W(a)+h=O has exactly two positive solutions a 1 and a 2 if 
0>h-> 7- Win. 

By combining this 1emma with Theorem 1, the taxonomy of 
Theorem 2 is obtained. In the case of -2W~o > h > 0, there are no ~- 
and oo-solutions, and no solitary a-solutions. We can instead find 
a>0, b>0 satisfying 

o0 

[W(nb + a ) -  W(nb)] +h=0 .  
n = - - o v  

This yields a periodic solution u(x) of period b, u(x)=u(x+b), 
consisting of localized excitations of length a. The numbers a and b 
are not unique. If the field is of finite length, boundary conditions will 
determine a and b. When the field is a ring form, we also have a finite 
number of pairs (a, b) each of which gives a periodic solution. 

3. Proof of  Theorem 4 

The parallelepiped composed of ul, uu, u m, and Ulv shifts in parallel 
as h changes. By choosing an appropriate h, it is always possible to 
let the system be monostable and bistable. 

In the case of w l < w  2, it is always possible by choosing an 
appropriate h [e.g., h=-(c1+c2)/2]  to let the system have no 
equilibria. The system has an oscillatory solution in this case. It is, 
however, impossible in the case of w t >w 2 that the system has no 
equilibria, even if h is chosen adequately. 

Since origin u=0 is a singular point of the system, in order to 
prove the existence of a stable oscillation in the case of w~ <w 2, we 
need to prove that u, starting at a sufficiently close to the origin, grows 
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to a large oscillation. We can prove that this occurs when the relation 

tan c~ tan fl tan 7 tan 6 > 1 

is satisfied in Figure 11. The relation always holds for a parallelepiped 
of this shape. 
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